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SUMMARY 

The Asymptotic Finite Element method for improvement of standard finite element solutions of perturbation 
equations by the addition of asymptotic corrections to the right hand side terms is presented. It is applied here 
to 1-D and 2-D diffusion-convection equations and to non-linear similarity equations. Excellent results were 
obtained without the a priori use of special trial and test functions. Theoretical expectations were confirmed. 

1. INTRODUCTION 

Regular and singular perturbation problems arise in different fields of interest including solid and 
fluid mechanics, heat transfer, e t ~ . ’ - ~  Approximate analytical solutions are available through 
asymptotic expansions techniques which consist of straightforward series expansions in the 
perturbation parameter for regular perturbation problems and a ‘composite’ construction of 
‘inner’ and ‘outer’ solutions in the case of singular perturbation problems. The accuracy of these 
approximations is of O(E”+ ’) (where E is the small characteristic parameter and n is the order of the 
asymptotic approximation). For boundary layer problems, these asymptotic approximations can 
recover the solution behaviour within thin layers. In practice only the first few terms in the 
asymptotic approximation are calculated because of complexity and the fact that the series is 
asymptotic and not convergent in general. This limits the usefulness of asymptotic techniques to 
values of E which may not be of interest over the range required in the application. For moderate 
values of the perturbation parameter, the accuracy of asymptotic approximations is usually 
insufficient. However, for these cases standard finite element schemes can give good results even 
when a crude mesh of elements is employed. For stiff problems (with thin boundary layers), 
standard numerical schemes can not exhibit solutions which are a good approximation to the 
mathematical model. To overcome this difficulty, several approaches are possible, such as the use 
of non-uniform meshes, adaptive techniques, upwind schemes, etc.’-’ The applicability and 
accuracy of such schemes are presently open questions. 

The asymptotic information on the solution behaviour has been used for constructing finite 
element schemes of different types. One approach is motivated by the classical singular 
perturbation methods where inner and outer numerical solutions are combined to give 
approximate solutions. These solutions become more accurate as the equations become stiffer; 
however, the error estimate of these schemes includes a term which is fixed for a given E and for a 
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given problem one has no numerical control on the desired level of accuracy for the model problem. 
A different approach is based on constructing trial and test space of functions which incorporate 
exponential basis functions that can asymptotically recover the solution behaviour at the 
boundary layers. 

In the present work we introduce the so-called Asymptotic Finite Element method which 
circumvents the difficulty of a priori constructing special trial and test functions, and yet can a 
posteriori recover the asymptotic structure of the solution. By using this approach one can improve 
the accuracy of both asymptotic and standard numerical solutions.899 It is interesting to point out 
that the correction and interpolation steps of the present method are related to similar steps of 
certain multi-grid versions and can be viewed as a continuous analogue of them." 

The main aims of the present work are to get a posteriori verification to the predicted global error 
 estimate^,^ and to present an extension of the proposed scheme to multi-dimensional diffusion- 
convection equations. 

2. FORMULATION 

2.1 Statement of the problem 

problem: 
Let R be a bounded open set of RN with boundary r. We consider the following boundary value 

L u = f ,  i n R ,  ( 1 )  
u = g ,  on r, (2) 

where L denotes a given elliptic differential operator. It is assumed that L is a well behaved operator 
and f and g are assumed to be sufficiently smooth functions of x ~ l i  = R + r. In the above 
equations, L, f and g can be a function of a small positive characteristic parameter denoted by E.  

2.2 Asymptotic approximation 

following form: 
Suppose that we have at our disposal an asymptotic solution of equations (1) and (2) of the 

UE - 2 ui(x; &)El ,  
i = O  

(3) 

where ui can be composed of inner and outer parts in the case of singular perturbation problems 
(more complicated constructions can also be accommodated). This solution is called the nth order 
asymptotic approximation, since eE = u - uE = O(E"+') .  Let f be obtained by operating with L on 
uE and gE be an asymptotic approximation to the boundary conditions, i.e. 

f E =  LuE, in 0, (4) 
gE= uE, on r. ( 5 )  

2.3 Finite element formulations 

elements." The representation of u within ah is approximated by 
Let the given domain n be approximated by ah which consists of an assemblage of finite 

u - uh = N,(x)u: =NU", x€ah, (6) 
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where u : = u h ( x i )  is the value of the approximate solution at the ith nodal point, N i  is the 
corresponding global trial function, N is the global matrix of trial functions and Uh is a vector 
whose entities are uf (here and in the sequel, we use the summation convention with summation 
over the nodes within the given region). The strong form, Petrov-Galerkin finite element 
formulation of (1) can be written as the following matrix equation: 

(MT, LN)hUh = (MT, f ) h ,  (7) 

where M is the global matrix of test functions, and (.;) denotes the usual inner product in L,(R). The 
index h in (,.),denotes an approximation to ( ;) obtained by a quadrature rule. In this formulation the 
trial space of functions is too restricted. To relax the smoothness requirement on the trial functions 
one applies the Green's theorem in such an optimal way that both trial and test functions have the 
same smoothness requirements. This yields the so-called weak formulation which, after imposing the 
boundary conditions (2), gives the following matrix equation: 

AhUh = f '. (8) 

(9) 

Our Asymptotic Finite Element (AFE) scheme of (1) is defined by 

Ah(Uh)Oh = fh + [Ah(UE)Ue - f E p h ] ,  

where UE is a vector whose entities are uf = uE(xi) and fE*h = (MT, P)h. Here, the terms outside the 
square brackets coincide with the Standard Finite Element (SFE) scheme (8), while the terms inside 
the square brackets represent the correction terms which are the essence of the present AFE 
scheme. For a linear operator L, equation (9) is equivalent to 

where 
, (10) 

(11) 

Ah@& = f h  - fe.h 

@& 3 Oh - U&. 

Hence, for this case, the AFE scheme is equivalent to the application of the standard parent method 
to the asymptotic error f - f". This gives rise to a correction term which is then added to u'. This 
correction term should vanish in the limit of E -+ 0 or h +O. Applying the standard interpolation (6), 
using Oh instead of Uh will not give improved results within the elements, since a polynomial 
interpolation can not recover the solution behaviour, especially when there are no nodal points 
inside the boundary layers. Instead, we apply the following a posteriori global approximation: 

fi = uE + NEE, (12) 

which can recover the solution behaviour. Based on the above equations, we can establish,' for 
appropriate linear operators L and under the assumption that the exact and asymptotic solutions 
are sufficiently smooth, the following theorem. 

Theorem. Let us have an SFE error estimate of the form 

11 eSFE 11 = 1 1  u - uh 11 < C ,  F(h, 6). 

11 eAFE 11 = 11 u - iih I( < C Z ~ n  + 'F (h ,  E), 

(13) 

(14) 

where II-II is either the Euclidean norm or the maximum norm denoted by l l . l l o  and II.(103, 
respectively and Ci denotes a generic constant independent of h and E .  Usually, the numerical error 
estimate is dependent on the norm of the k + 1 first derivatives of the exact solution, where k is the 
degree of the highest complete polynomial interpolation. For several linear versions of (l), the error 

Then, for the AFE scheme, we have the following error estimate: 
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estimate of finite element solutions employing linear elements can be bounded by either the 
Euclidean or maximum norm of the right hand side. For these cases, we assume that for small 
values of h and E, the following estimates hold: 

II eSFE II i N C3H(h) II  f II i ,  (15) 

II eAFE II i 'V c,E(&)H(h) II f II i, (17) 

where H and E are given functions and C,, C4 and C, are positive constants. Then, for a given 
mathematical problem and numerical schemes, the ratio defined by 

II eAFE II i II f II i 
II eSFE II i II eE II i 

. K .  = , 1=o,C0, ' 

approaches a limit value. These assumptions may not hold in particular cases. However, they do 
seem to hold in non-trivial cases. 

The AFE scheme has the following elegant features. 

(a) By using standard finite element and asymptotic approximations, one gets an AFE scheme 
which can improve the accuracy of both the SFE scheme-by a factor of O(~"+l)-and the 
asymptotic approximation-by a factor of the order of the discretization error of the parent SFE 
scheme. 

(b) The AFE scheme is constructed from the SFE scheme through a modification of the right 
hand side vector. Therefore: 

(i) it can be easily adjusted to any existing SFE code, since the trial and test functions are the 
same as those employed for the parent SFE scheme. Moreover, by using the a posteriori 
interpolation (12), one can easily recover the solution behaviour and circumvent the difficulty of 
a priori constructing trial and test spaces of functions which incorporate special functions; 

(ii) applying certain SFE schemes, like the Bubnov-Galerkin scheme, to stiff problems, results 
in physically unrealistic oscillatory solutions unless the mesh is appropriately constructed. These 
wiggles appear because of the unfavourable properties of (Ah)-  ', which are not improved by the 
AFE scheme. Therefore, it is not clear that the AFE scheme can eliminate this phenomenon, but it 
is expected that the amplitude of these wiggles will be reduced by a factor of O(E"+ '). Thus, the AFE 
scheme can be effective for the whole range of hfE; 

(iii) the round-off error is about the same as in the parent scheme. This property is of crucial 
importance for penalty finite element schemes, where the round-off error is proportional to the 
value of the penalty parameter." By using the AFE scheme, one can reduce the round-off error, 
since for a given accuracy, with this scheme, one can use smaller values of the penalty parameter;I3 

(iv) the AFE scheme yields a global set of algebraic equations with the same dimension as the set 
yielded by the parent SFE scheme. Hence, by using the AFE scheme, one can either, for given 
computer facilities, get a more accurate solution, or for a given accuracy, use smaller computer 
facilities. 

3. SAMPLE PROBLEMS 

Here we shall restrict the discussion to three examples, where the main features of the AFE method 
are already exhibited. The following problems have been tested. 
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3.1 Linear 1 -D s t g  equations 

Let us consider the following problem: 

Lu = EU" + qu' + ru = f, in (0, l), (19) 

u(0) = 0, u( 1) = 0, (20) 

where q, r and f are given functions of x which are assumed to be sufficiently smooth, and ( )' 
denotes differentiation with respect to the coordinate x. Suppose that the one dimensional region 
[0, 11, is discretized by finite elements. We consider a partition KI of (0, 1): 

n = {O=x, < X I  <x2 . . .  < x,+1= l}, (21) 
where rn is the number of inner nodal points, and define the maximum discrete error norm and the 
Euclidean error norm by 

where u is a reference solution which is considered to be either the exact solution when it is 
available or the best numerical solution available and li represents a given approximate solution. 

The Petrov-Galerkin finite element formulation of (1 9) yields the following matrix equation: 

[ - E ( M T ,  N ) ) h  + (MT, qN' + rN)h]Uh 

= (MT, f ) h  I {  [ - &(MIT, N)h (MT, q N  rN)h]UE - (MT, f E ) h } ,  (24) 
where A = 0 for the SFE scheme and I = 1 for the AFE scheme. The overbar which was used to 
distinguish the AFE solution from the SFE solution has been omitted. The context affords 
sufficient means to avoid confusion. 

Test case. As a particular example we examine the following stiff problem: 

EU" + u' + u = - (1 + x), in (0, l), (25) 

u(0) = 0, u( 1) = 0. (26) 

1. (27) 

The first order asymptotic solution is given by 

UE = - X  - +X-X/& - x + E [  (1 - x)e1 - X  - (1 + x)e' +x-x /& 

This example was run with E = hY for various values of y ,  using the SFE and AFE schemes. Both 
Bubnov-Galerkin and Petrov-Galerkin formulations have been e m p l ~ y e d . ' ~  The region has 
been discretized by a uniform mesh of linear elements. For each value of y ,  the element length, h, 
was successively halved. The L ,  global error norm and the appropriate rate of convergence, R,, for 
the above example, are shown in Tables 1-111. For y < 1, the performance of the Bubnov-Galerkin 
scheme is better than that of the Petrov-Galerkin scheme, while for y > 1 the Petrov-Galerkin 
scheme is superior. As expected, the performance of the AFE scheme shows that the improvement 
of the rate of convergence, R t F E  - REFE, approaches (n + 1)y. Similar conclusions have been found 
regarding the results with respect to the maximum discrete In order to get a posteriori 
verification of the theorem, the K i  ratio has been computed. The values of K O  and K ,  are shown in 
Table IV. As expected, these ratios approach limit values which are of O(1). The above results 



Table I. Example 1 a-comparison between SFE and AFE schemes (Bubnov-Galerkin, 
zeroth order of asymptotic approximation) 

eh, Ro 

NE Y et  SFE AFE SFE AFE 

0 5  
075 

64 1.0 
1.5 
2.0 
0 5  
0.75 

128 1.0 
1.5 
2.0 
0 5  
0.75 

256 1 .o 
1.5 
2.0 
0.5 
0.75 

512 1 .o 
1.5 
2.0 

1.19E- 1 
5.25E-2 
1'94E-2 
2.46E-3 
3'09E-4 
9.45E-2 
3.21E-2 
9.79E-3 
8.72E-4 
7.71E-5 
7.15E-2 
1.94E-2 
4.92E-3 
3.09E-4 
1.93E-5 
5'25E-2 
1.16E-2 
2.46E-3 
1.09E-4 
4.77E-6 

6.84E-4 
3'43E-3 
1.62E-2 
1.74E-1 
6.35E-1 
2.97E-4 
1-89E-3 
1.15E-2 
154E- 1 
6.36E-1 
1.27E-4 
1'04E-3 
8.12E-3 
1.34E-1 
6.37E-1 
5.38E-5 
5.68E-4 
5.75E-3 
1.1 5E-1 
6.37E-1 

8.13E-5 
1.50E-4 
2.52E-4 
3.40E-4 
1.55E-4 
2'54E-5 
4.94E-5 
8.95E-5 
1.07E-4 
3.88E-5 
7.76E-6 
1'62E-5 
3'17E-5 
3.27E-5 
972E-6 
2.35E-6 
5.26E-6 
1.12E-5 
9.89E-6 
243E-6 

1.11 
0.85 1 
0.49 1 
0116 

- 9.77E-3 
1.20 
0860 
0.496 
0.171 

1.23 
0.866 
0.498 
0.205 

1.24 
0-870 
0-499 
0-226 

- 2.59E-3 

- 6.68E-4 

- 1.70E-4 

1.63 
1.58 
1.49 
1.62 
1.99 
1.68 
1-60 
1.49 
1.67 
2.00 
1.71 
1.61 
1.50 
1.67 
2.00 
1.72 
1.62 
1.50 
1.73 
2.00 

Table 11. Example 1 b-comparison between SFE and AFE schemes (Bubnov-Galerkin, 
first order of asymptotic approximation) 

eh, Ro 

NE Y et  SFE AFE SFE AFE 

0.5 
0.75 

64 1 .o 
1.5 
2.0 
0 5  
0.75 

128 1 .o 
1.5 
2.0 
0 5  
0.75 

256 1 -0 
1.5 
2.0 

0 5  
075 

512 1 .o 
1.5 
2-0 

3.87E-2 
5.61E-3 
7.3 1 E-4 
1'16E-5 
1.73E-7 

2.03E-2 
204E-3 
1'84E-4 
1.38E-6 
1.08E-8 
1.08E-2 
7.3 1 E-4 
4.63E-5 
1.73E-7 
6.74E-10 

5'61E-3 
2.60E-4 
1.1 6E-5 
2.16E-8 
4.21 E- 1 1 

6.84E-4 
3.43E-3 
1.62E-2 
1.74E-1 
635E-1 

2'97E-4 
1.98E-3 
1.15E-2 
1.54E-1 
6.36E-1 
1.27E-4 
1.04E-3 
8.12E-3 
1'34E-1 
6.37E-1 

5.38E-5 
5.68E-4 
5.75E-3 
1.1 5E- 1 
6.37E-1 

2.65E-5 
1.66E-5 
9.86E-6 
1.66E-6 
947E-8 

5.59E-6 
3.24E-6 
1.75E-6 
1.84E-7 
5.92E-9 
1'21E-6 
631E-7 
3.10E-7 
2.00E-8 
3'70E-10 

2.59E-7 
1.22E-7 
5.48E-8 
2.14E-9 
2.32E- 11 

1.1 1 
0.85 1 
0.49 1 
0.1 16 

- 9.77E-3 

1.20 
0-860 
0-496 
0-171 

- 2.59E-3 
1.23 
0.866 
0.498 
0.205 

- 668E-4 
1-24 
0-870 
0-499 
0.226 

- 1.70E-4 

2.39 
2.33 
2.49 
3.12 
3.99 
2.24 
2.35 
2.50 
3.17 
4.00 
2.2 1 
2.36 
250 
3.21 
4.00 

2.22 
2.37 
2.50 
3.23 
4.00 



Table 111. Example lc-comparison between SFE and AFE schemes (Petrov-Galerkin, 
zeroth order of asymptotic approximation) 

eh, RO 

NE Y SFE AFE SFE AFE 

0.5 
075 

64 1 .o 
1.5 
2.0 

0-5 
075 

128 1 .o 
1.5 
2.0 

0.5 
075 

256 1.0 
1.5 
2.0 
0.5 
0.75 

512 1.0 
1 3 
2.0 

1.19E- 1 
525E-2 
1'94E-2 
2'46E-3 
3.09E-4 

9.45E-2 
3'21E-2 
9'79E-3 
8'72E-4 
7.71 E-5 

7.15E-2 
1'94E-2 
4'92E-3 
3.09E-4 
1'93E-5 
5.25E-2 
1'16E-2 
2.46E-3 
1'09E-4 
4.77E-6 

2.98E-3 
1.25E-2 
4'63E-2 
1'55E-1 
1'90E- 1 

1'22E-3 
6.78E-3 
3.25E-2 
1.17E- 1 
1.37E-1 
4.95E-4 
3.68E-3 
2'29E-2 
8.72E-2 
9'74E-2 
2WE-4 
2'01E-3 
1.62E-2 
6.38E-2 
6.91E-2 

3.59E-4 
5.54E-4 
7.26E-4 
3.04E-4 
4.65E-5 

1.05E-4 
1.78E-4 
2.54E-4 
8.12E-5 
8'34E-6 

3'07E-5 
5.76E-5 
8.95E-5 
2.13E-5 
1'49E-6 
8.99E-6 
1'87E-5 
3.16E-5 
5.5 1 E-6 
2.64E-7 

1.18 
0905 
0523 
0.366 
0.457 

1.29 
0.888 
0512 
0-402 
0.479 

1-30 
0880 
0.506 
0.430 
0489 
1.28 
0-877 
0-503 
0.450 
0.495 

1.72 
1.64 
1.52 
1.87 
246 

1.77 
1.63 
1.51 
1.90 
2.48 

1.78 
1.63 
1.51 
1.93 
249 
1.77 
1.63 
1.50 
1.95 
2.50 

Table IV. Example 1-computed values of KO and K, 

NE Y 

0 5  
0.75 

64 1 .o 
1.5 
2.0 

0.5 
0.75 

128 1 .o 
1.5 
2.0 

0.5 
0.75 

256 1 .o 
1.5 
2.0 

0.5 
075 

512 1 ,o 
1.5 
2.0 

Ex. l a  Ex. l b  Ex. lc 

K m  KO K ,  KO K ,  KO 

1.33 1.52 
0938 1.27 
0821 1.23 
0758 1.21 
0579 1.21 
1.13 1.38 
0865 1.24 
0784 1.22 
0747 1.21 
0747 1.21 
1.01 1.31 
082 1.23 
0763 1.21 
0741 1.21 
0742 1.21 

0938 1.27 
0792 1.22 
0751 1.21 
0739 1.21 
0739 1.22 

1.34 
0.949 
0.828 
0.760 
0.761 

1.15 
0.874 
0.787 
0.748 
0.748 

1.027 
0.826 
0.765 
0.742 
0.742 

0.949 
0.795 
0.753 
0-739 
0.739 

1.53 
1.3 1 
1.27 
1.26 
1.32 

1.42 
1.29 
1.26 
1.32 
1.32 

1.35 
1.27 
1-26 
1.32 
1.32 

1.31 
1.26 
1.26 
1.32 
1.32 

1.30 
0.934 
0-82 1 
0.756 
0.760 
1.12 
04366 
0784 
0.746 
0.748 
1.01 
0.820 
0.763 
0741 
0742 

0-934 
0.79 1 
0.75 1 
0.738 
0.739 

1.54 
1.28 
1.23 
1.21 
1.21 

1.54 
1.25 
1.22 
1.21 
1.21 

1.32 
1.23 
1.21 
1.21 
1.21 

1.28 
1.22 
1.21 
1.21 
1.22 
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Table V. Example la-solution accuracy as a function of x and NE ( E  = 1O-j) 

- 

x eE 

8 element 16 element 32 element 

(R - 1) 
x 103 

(R - 1) ( R -  1) 
.BE 103 4 F E  103 4 F E  

1/32 
1/16 
3/32 
1 18 
5/32 
3/16 
7/32 

9/32 
5/16 
11/32 

11/32 
7/16 
15/32 

1 14 

318 

1 12 

2.56E-3 
2.40E-3 
2.25E-3 
2.10E-3 
1.97 E-3 
1.84E-3 
1'71E-3 
1.59E-3 
1'48E-3 
1.37E-3 
1'27E-3 
1.17E-3 
1.08E-3 
9.89E-4 
9'068-4 
8.26E-4 

1.68E1 

5.06 0.726 2.14 

1.51E1 

1.78 1.34 1.65 

1.35E1 

4.28 0.540 1.24 

1.21E1 

1 9 4  1.22 8.89E-3 

1.19 

1.46 

1.18 

1.46 

1.17 

1.45 

1.16 

1.45 

- 2.76 
2.12 

- 2.20 
1.65 

- 1.77 
1.28 

- 1.42 
- 9.89E-1 
- 1.14 

7.61E-1 
- 9.23E- 1 

5.8 1 E- 1 
- 7.49E- 1 

4.40E- 1 
- 6.10E-1 

3.30E-1 

1-28 
1.44 
1.27 
1.46 
1.26 
1.47 
1.25 
1.48 
1.24 
1.50 
1.24 
1.52 
1.23 
1.54 
1.23 
1.56 

suggest the following strategy to estimate various errors in our computations, in particular the 
AFE error: 

(i) calculate K i  for a relatively large value of the characteristic parameter; 
(ii) calculate SFE, AFE and asymptotic solutions, for values of E which are of interest. The error 

introduced in these approximations can be estimated by 

I t  is clear that this procedure can be effective only in those cases where the AFE error is smaller 
than both SFE and asymptotic errors by at least one order of magnitude. The error distributions of 
the approximate solutions for the above model problem are shown in Table V. The pattern of the 
wiggles is clearly demonstrated. In order to represent the behaviour of the corresponding AFE 
profile, the following ratio has been defined: 

The Table demonstrates that, within 0.1 per cent, the amplitude of the AFE pointwise error is 
smaller by a factor of E than the corresponding SFE error. As expected, the AFE scheme does not 
remove the oscillations entirely, but their amplitude is considerably reduced. 

3.2 Non-linear similarity equations 

Several problems of interest can be treated by similarity methods which reduce the Navier- 
Stokes equations to a system ofnon-linear similarity equations. The AFE method can be applied to 
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r 
L 

I Stationory 
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Figure 1. Flow between a stationary and a rotating disk with suction-notation 

such a system of ordinary differential equations. Depending on the particular problem, regular or 
singular perturbation solutions can be constructed and used in the present r n e t h ~ d . ’ ~ - ’ ~  Finite 
element formulations of a typical form of these equations are described in detail in Reference 18 
and owing to space limitations will not be presented here. 

Test case--flow between a stationary and a rotating disk with suction (Figure I ) .  The governing 
differential equations for the laminar flow of a Newtonian incompressible fluid confined between 
two infinite disks are given by 

F + Re(FF” - 0.5F’*) + aG2 = A, (32)  
- 

where 
G” + Re(F’G - FG’) = 0, ( 3 3 )  

Wr 
= - 2d F’(q), u = orG(q),  

w = - WF(q), q z/d, (34) 

Re = Wd/v, CI = 2d3m2/v W .  

Here, r, z, are cylindrical coordinates, u, v,  w the radial, azimuthal and axial velocity components, w 
is the angular velocity, Re is the suction Reynolds number, c1 is a rotation coefficient, and A is the 
constant of integration proportional to the pressure gradient, to be determined from the boundary 
conditions which are 

@ q = o :  

@ q = 1 :  ( 3 5 )  

An asymptotic solution of the above equations has been developed for small values of Re. The 
first order solution is given byI9 

FE = F, + ReF, ,  
Gc = Go + ReG, ,  

A‘= A ,  + R e A , ,  
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ci 
F ,  = (3q2 - 2q3) + -( - 2q2 + 3q3 - ?5) ) ,  60 

GO = q, 

A ,  = - 12 + 0.3a, 

F ,  = ( 1 3 ~ ~  - 18q3 + 7q6 - 2q7)/70 + ci10-’(15q2 
+ 8q3 + 2527’ - 546$ + 2 1 6 ~ ~  + 4 5 ~ ’  
+ 10q9)/1.512 + ~ t ~ 1 0 - ~ ( 3 3 2 q ~  - 5 7 9 ~ ~  
+ 192~’ + 2 5 2 ~ ~  - 1 6 2 ~ ~  - 301’ - 15q9 + 1 0 ~ ~ ~ ) / 9 . 0 7 2 ,  

G ,  = ( -  q + 5q4 - 4q5)/20 + - 8q - 35q4 + 63q’ - 20q7)/1.26, 

A ,  = - 54/35 + a/3150- 1.93 x 10-3a2/5*04 (37) 

First, a reference solution of the similarity equations (32) and (33) has been calculated. This 
solution is based on an AFE solution using the first order asymptotic approximation and 
employing a uniform mesh of 160 elements. The value of A is calculated in such a way that the 
boundary condition of F at q = 1 is accurately satisfied. Then, this reference value of A has been 
taken as a known value and the accuracy of the various schemes has been tested by comparing the 
error in F”(1) (note that F(1) has not imposed as a boundary condition). The results are shown in 
Table VI. For the uncoupled case, a= 0, and for the coupled case with ci = 5 and Re = 1, the AFE 
scheme based on the zeroth order asymptotic solution does not improve the accuracy of F”(1). This 
illustrates the possibility that a low order analytical approximation does not have sufficient 
structure to correct the truncation error.’ For the other cases, the improvement is proportional to 
Re”’ ’. Next, for each scheme, A was calculated such that F”(1) = 1. The computed errors of A are 

Table VI. Example 2-absolute computed errors of Fh at the rotating disk, IFh( 1) - 1 I 

u = o  u = 5  

NE Scheme Re = lo-’  RE = lo - ’  RE = 1 Re = lo-’ Re = lo-’ Re = 1 

a 
2 b 

C 

a 
4 b 

C 

a 
8 b 

a 
16 b 

C 

C 

2.38E-4 2.30E-3 1.61E-2 

3.54E-7 

4.63E-5 

7.54E-8 

9.7 1 E-6 

144E-8 
2.19E-6 

2.86E-9 

3.43E-5 

4.46E-4 

7.30E-6 

9.36E-5 

1.40E-6 
2.llE-5 

2.77E-7 

2.58E-3 

3‘10E-3 

5’39E-4 

6.57E-4 

1.01E-4 
1.50E-4 

1 ‘98 E- 5 

1.88E-2 
2.61E-4 
2.99E-7 

3’74E-3 
5.08E-5 
6.46E-8 

7‘95E-4 
1.05E-5 
1.18E-8 
1.80E-4 
2.33E-6 
2.18E-9 

1.6 1 E-2 
2.53E-3 
2.91E-5 

3.2 1 E-3 
4.93E-4 
6.28E-6 

6.86E-4 
1’02E-4 
1.14E-6 
1.56E-4 
2.26E-5 
2.13E-7 

3.46E-3 

1.00E-3 

6.8 1 E-4 

4.84E-4 

1.43 E-4 

8.79E-5 
3.26E-5 

1.63E-5 
_ _ _ _ _ _ _ _ ~  

Notation: 
(a) SFE scheme. 
(b) AFE scheme based on zeroth order asymptotic approximation. 
(c) AFE scheme based on first order asymptotic approximation. 
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Table VII Example 2-computed errors of the constant of integration, A 

c r = O  cr=5 
NE Scheme Re = lo-' Re = lo-'  Re=1  Re=10-' Re=10- '  Re= 1 

a 
2 b 

C 

a 
4 b 

C 

a 
8 b 

C 

a 
16 b 

eAL 0 
1 

C 

2.86E-3 
2.86E-3 
4.26E-6 

5.57E-4 
5'57E-4 
9'07E-7 

1.17E-4 
1.17E-4 
1.74E-7 

2.63E-5 
2.63E-5 
3 '44 E- 8 
1.54E-2 
6.40E-6 

2.83E-3 
2.83E-3 
4.24E-4 

5'49E-3 
549E-3 
8.99E-5 

1.15E-3 
1.15E-3 
1.72E-5 

2.60E-4 
2.60E-4 
3.41E-6 

1.54E-1 
6.39E-4 

2.52E-1 
2.52E-1 
4.07E-2 

476E-2 
4.16E-2 
3.02E-4 

1'00E-2 
1'00E-2 
1.55E-3 

- 2.29E-3 
- 2'29E-3 

3.02E-4 

1.54 
6.27E-2 

2.26E-1 
3'15E-3 
3.60E-6 

4.50E-2 
6.llE-4 
7.77E-7 

9.59E-3 
1.26E-4 
1.41E-7 

2.16E-3 
2.79E-5 
2.63E-7 

1.55E-2 
3.62E-6 

1.99E-1 
3.12E-2 
3.6OE-4 

3'96E-2 
6.07E-3 
7.74E-5 

8 4 E - 3  
1.25E-3 
1.41E-5 

1.92E-3 
2.78E-4 
2.62E-6 

1.55E-1 
3.65E-4 

5.44E-2 
2.9 1 E- 1 
3.56E-2 

1.043E-2 
5.67E-2 
7'42E-3 

2.18E-3 
1.19E-2 
1.34E-3 

- 4.97E-4 
2.69E-3 
2.49E-4 

1.59 
3.90E-2 

Notation: 
(a) SFE scheme. 
(b) AFE scheme based on zeroth order asymptotic approximation. 
(c) AFE scheme based on first order asymptotic approximation. 

shown in Table VII. It seems that, by using the AFE scheme with a crude mesh of elements, one can 
get a better estimate for the value of A than both SFE and asymptotic approximations. Similar 
conclusions hold for F and F' (numerical results for the case of rotating compressible flows are 
presented in Reference 18). The pressure is proportional to A, F and F'. Hence, by applying the 
AFE scheme, one can significantly improve the accuracy of the pressure and velocity components. 

3.3 Multi-dimensional diffusion-convection equations 

Consider the following class of stiff problems: 

Lu = - EV2q + Loq = f, in R, (38) 

q =g, on r. (39) 
Here, R is a bounded open set in RN with boundary r, L is a second order elliptic operator, and Lo 
is the outer operator of reduced order. It is assumed that Lo is a well behaved operator and f and g 
are assumed to be sufficiently smooth functions of x. The 1-D version of this model problem has 
been presented in Section 3.1. The notation defined in that section has been adopted here and 
properly extended. 

The weak form, Petrov-Galerkin finite element formulations of (38) are given by 

[&(VTMj, VNi)h + (Mj ,  LONi)hlq: 
= (Mi ,  f ) h  + A{ [E(VTMj, VNi)h + (Mi, L0Ni)hlqf - (Mi, f E ) h ) )  (40) 

where A =  0 for the SFE scheme and A = 1 for the AFE scheme. 

Test case-2-D diffusion-convection equations. We consider the advection of a quantity q in a 
square region with unit area (Figure 2). 
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( 1 . 1 )  

(0,O) 

R 

Y 

( 1  , O )  

Figure 2. 2-D diffusion-convection problem-notation 

The normalized equation is 

q = sin nx, 
q = - sin ny, 

on r1, 
on r4, 

q=y+s inn( l  -y ) ,  on rz, 
q = x + sin n(x - l), on r3. 

In the present case, the velocity field V is assumed to be known, and its x and y components denoted 
by u and u, respectively, satisfy u = u = J2/2. A similar problem is often used as a test case6*20-22 for 
various numerical schemes and it is well known that most methods fail as the element Reynolds 
number, Reh = I V I h/c, becomes larger than O( 1). 

The asymptotic solution is obtained by the method of matched asymptotic  expansion^.^,^ The 
zeroth order asymptotic solution is given by 

4& = 4; + q; 
= sin n(x - y) + [xE, + YE,  - E,E,] 

where 
E ,  = (euxlr - 1)/(e"/& - l), 
E Y = (e"Y/& - l)/(e"/& - 1). 

(43) 

(44) 

Here, the outer solution, q;, remains constant along stream lines and the inner solution, q;, 
includes horizontal, vertical and corner boundary layers. The performance of the SFE and AFE 
schemes for the above example is shown in Table VIII. As we do not have the exact solution for this 
problem, we used as reference a solution obtained with the AFE scheme employing a uniform mesh 
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Table VIII. Example 3-comparison between SFE and AFE schemes 

1/10 4‘67E-1 
1/20 3.64E-1 
1/50 2.16E-1 
1/100 1.27E-1 
11200 8.05E-2 
11500 4.05E-2 
1/1ooO 2.22E-2 

3 x 3 el.* 

eSFE eAFE 
m m 

3’10E-2 2’31E-2 
1.40E-1 7.06E-2 
5.08E-1 1.36E-1 
8.46E-1 1.22E-1 
1.41 9.88E-2 
3.26 8.66E-2 
6.43 8’50E-2 

K m  
eSFE 

m 
eAFE 

m 

1.60 
1.39 
1.24 
1.13 
0.869 
0.657 
0.597 

4.40E-3 
2.65E-2 
2.24E- 1 
5.43E- 1 
8.21E-1 
1.19 
1-90 

3.65E-3 
1.29E-2 
3’95E-2 
5.91E-2 
5.64E-2 
3.9 1 E-2 
3.48E-2 

6 x 6el. 
~ 

K m  

1.78 
1.33 
0.819 
0.855 
0.853 
0.810 
0.826 

12 x 12el. 

eSFE eAFE 
m m K m  

4.5 1 E-4 3.69E-4 
2.90E-3 1’81E-3 
4’79E-2 1’05E-2 
2.32E-1 2’37E-2 
5.69E-1 3.28E-2 
9.18E-1 3.06E-2 
1.07 2.22E-2 

1.75 
1.72 
1.01 
0.802 
0.7 17 
0.823 
0.936 

* Uniform mesh of biquadratic Lagrangian elements. 

of 24 x 24 biquadratic Lagrangian elements. For this case the ratio K ,  is defined by 

eAFEu(l, 1) K m =  eSFE e ‘ 

m e m  
(45) 

We expect K ,  to approach a constant for small values of h and E. The fact that the values of K ,  
presented in the Table are not far from unity, while the values of the errors ekFE, e z E  and e z  vary by 
orders of magnitude, supports our theory also for the multi-dimensional case. We do not expect 
better agreement because of two reasons-the element size is not sufficiently small for the problem 
under consideration and the estimated errors may be affected by errors in the reference solution. 
The magnitude of K i  can serve as a measure of the efficiency of the AFE method. We can conclude 
that the AFE method is quite attractive for the present problem, since the computed values of K ,  
are not far from unity. 

We have not considered graded grids because our main object is to compare the relative 
performance of different finite element formulations as a function of h and E.  However, it should be 
pointed out that improved results as compared to those quoted in the above Tables, could have 
been obtained by using either graded grids or an SFE scheme based on variable upwinding with 
adaptive mesh refinement ~ t r a t e g i e s . ~ , ’ ~ , ~ ~  

4. CONCLUDING REMARKS 

1. The theory of the AFE scheme was presented and verified in several test cases. The 
dependence of the error estimate on the mesh size and the small characteristic parameter is best 
presented via the ‘constant’ Ki which turns out to be close to one. It follows that the AFE method 
gives an error which is approximately equal to the product of errors of SFE and asymptotic 
approximations. Thus, the AFE method can be very useful for difficult problems of regular and 
singular perturbation types. 

2. When an analytical asymptotic solution is available the extra work required to compute the 
right hand side correction is usually negligible as compared to the solution of the resulting set of 
algebraic equations. On the other hand solving the problem on a finer grid by the SFE method can 
be very costly in CPU time and memory requirements. The process of finding an analytical 
asymptotic solution can be performed by means of symbolic computer  language^.^' In some 
problems analytical solutions are difficult or impossible to achieve. In such cases numerical 
methods can be applied to the reduced which are usually easier to solve than the 
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original system (the reduced equations may be of lower order or lower dimension than the original 
set). 
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